Switching green to red emission in tridoped ZrO2:Yb3+-Er3+-Bi3+ nanocrystals

Alejandra Urbina-Frías, Tzarara López-Luke, Haggeo Desirena, Pedro Salas, Alejandro Torres-Castro, Elder De la Rosa

Optical Materials. Volume 48, October 2015, Pages 92–96 doi:10.1016/j.optmat.2015.06.041

Abstract.

Tridoped ZrO2:Yb3+–Er3+–Bi3+ nanophosphor was synthesized by hydrothermal process and demonstrated the possibility of switching from a strong green–yellow broadband signal to red emission due to Bi3+ and Er3+ ion by changing excitation from 350 nm to 970 nm, respectively. The green–yellow band is associated to the transition 3P1 \rightarrow 1S0 and was overlapped with the green band associated to the transition 2H11/2 + 4S3/2 \rightarrow 4I15/2 of Er3+ as a result of the energy transfer from Bi3+ to Er3+. The strong red band is associated to 4F9/2 \rightarrow 4I15/2 transition of Er3+ and enhanced by a factor of 3 as a result of the forward and backward energy transfer process (Er3+ \rightarrow Bi3+ \rightarrow Er3+). This sink effect where electrons can be stored temporally and released back can be useful to enhance the emitted signal of other lanthanides.

Keywords

Nanomaterials; Visible emission; Upconversion; Energy transfer